Gestational diabetes develops in pregnant women who have never had diabetes. If you have gestational diabetes, your baby could be at higher risk for health complications. Gestational diabetes usually goes away after your baby is born but increases your risk for type 2 diabetes later in life. Your baby is more likely to become obese as a child or teen, and more likely to develop type 2 diabetes later in life too.
Modern understanding of the cardiovascular system began with the work of physician William Harvey (1578–1657), who described the circulation of blood in his book "De motu cordis". The English clergyman Stephen Hales made the first published measurement of blood pressure in 1733.[152][153] However, hypertension as a clinical entity came into its own with the invention of the cuff-based sphygmomanometer by Scipione Riva-Rocci in 1896.[154] This allowed easy measurement of systolic pressure in the clinic. In 1905, Nikolai Korotkoff improved the technique by describing the Korotkoff sounds that are heard when the artery is ausculated with a stethoscope while the sphygmomanometer cuff is deflated.[153] This permitted systolic and diastolic pressure to be measured.

When you are first diagnosed with hypertension, you can expect a period of time when you will be seeing your doctor more often than usual. You will need some baseline testing to look for an underlying cause for your hypertension, and you will probably need several medical visits to determine whether lifestyle adjustments or medication will be effective in helping you reach your optimal blood pressure.
Kids who have a family history of heart disease or diabetes are at greater risk for metabolic syndrome. But, as with many things in life, the lifestyle habits a child adopts can push things in one direction or another. So kids who are active, fit, and eat a lot of fruits and vegetables may drastically decrease their chances of developing metabolic syndrome — even if a close relative already has it.
The second hormone that becomes involved when you begin to lose weight is a hormone known as leptin. Leptin is a hormone that is released from the fat cells to signal to the brain about how much fat we have in storage. To our body this is kind of like the indicator on a car telling us how much fuel we have in the tank. Leptin is also a messenger that is involved with controlling your metabolic rate AND your appetite.
These calorie counting fanatics are either unaware, or don’t want you to know about what we call the law of metabolic compensation. This law dictates that your metabolism is not like a calculator at all but more like a thermostat or see-saw. You eat less and exercise more to burn calories, and your body compensates by making you more hungry while at the same time decreasing the amount of calories you burn at rest (resting energy expenditure or REE).
^ Cheng J, Zhang W, Zhang X, Han F, Li X, He X, Li Q, Chen J (May 2014). "Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis". JAMA Internal Medicine. 174 (5): 773–85. doi:10.1001/jamainternmed.2014.348. PMID 24687000.

Glucose is a simple sugar found in food. Glucose is an essential nutrient that provides energy for the proper functioning of the body cells. Carbohydrates are broken down in the small intestine and the glucose in digested food is then absorbed by the intestinal cells into the bloodstream, and is carried by the bloodstream to all the cells in the body where it is utilized. However, glucose cannot enter the cells alone and needs insulin to aid in its transport into the cells. Without insulin, the cells become starved of glucose energy despite the presence of abundant glucose in the bloodstream. In certain types of diabetes, the cells' inability to utilize glucose gives rise to the ironic situation of "starvation in the midst of plenty". The abundant, unutilized glucose is wastefully excreted in the urine.


Exogenous administration of the other steroids used for therapeutic purposes also increases blood pressure (BP), especially in susceptible individuals, mainly by volume expansion. Nonsteroidal anti-inflammatory drugs (NSAIDs) may also have adverse effects on BP. NSAIDs block both cyclooxygenase-1 (COX-1) and COX-2 enzymes. The inhibition of COX-2 can inhibit its natriuretic effect, which, in turn, increases sodium retention. NSAIDs also inhibit the vasodilating effects of prostaglandins and the production of vasoconstricting factors—namely, endothelin-1. These effects can contribute to the induction of hypertension in a normotensive or controlled hypertensive patient.
[Guideline] Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018 Jun. 71(6):e13-e115. [Medline]. [Full Text].
×