Modern understanding of the cardiovascular system began with the work of physician William Harvey (1578–1657), who described the circulation of blood in his book "De motu cordis". The English clergyman Stephen Hales made the first published measurement of blood pressure in 1733.[152][153] However, hypertension as a clinical entity came into its own with the invention of the cuff-based sphygmomanometer by Scipione Riva-Rocci in 1896.[154] This allowed easy measurement of systolic pressure in the clinic. In 1905, Nikolai Korotkoff improved the technique by describing the Korotkoff sounds that are heard when the artery is ausculated with a stethoscope while the sphygmomanometer cuff is deflated.[153] This permitted systolic and diastolic pressure to be measured.

Treatment of hypertension is important, despite the fact that it rarely causes noticeable symptoms at the early stages. Hypertension accelerates atherosclerosis, which leads to coronary artery disease, heart attacks, heart failure, strokes, kidney failure, peripheral artery disease, and aortic aneurysms. Treating hypertension in the early stages has been shown to prevent these complications. https://radaris.com/p/Susie/Burrell/us-map.png

The clinical value of using "metabolic syndrome" as a diagnosis has previously been debated due to different sets of conflicting and incomplete diagnostic criteria. These concerns have led the American Diabetes Association and the European Association for the Study of Diabetes to issue a joint statement identifying eight major concerns on the clinical utility of the metabolic syndrome diagnosis.[69] The principal argument has been that when confounding factors such as obesity are accounted for, diagnosis of the metabolic syndrome has a negligible association with the risk of heart disease.[70]


Usually, there are no immediate physical symptoms of metabolic syndrome. People with metabolic syndrome do have a tendency to be overweight, especially around the abdomen – having an “apple shape.” Moreover, since this condition is associated with insulin resistance, individuals with metabolic syndrome may display some of the clinical features associated with an increase in the production of insulin. For instance, women may experience cysts on their ovaries (metabolic syndrome is associated with polycystic ovarian syndrome) and irregular periods. Individuals can have an increased incidence of skin tags, benign raised growths of skin that usually appear increases on the neck and back. In addition, they can exhibit acanthosis nigricans – a pigmentation of the skin, which appears discolored or dirty over the back of the neck and underarms.
A person who weighed 180 pounds who diets down to 150 pounds burns significantly less energy than another person of the same height who also weighs 150 pounds who did not diet. Something about dieting causes an exaggerated slow down in metabolic rate that goes beyond what would be predicted based on tissue loss. And, as pointed out previously, this comes along with strong and unrelenting biological sensations to seek food. That is a recipe for compensatory weight regain.
Eat more fruits and vegetables. According to the 2015-2020 Dietary Guidelines, a person on a 2,000-calorie-per-day diet should eat 2.5 cups of vegetables and 2 cups of fruit a day. This amount will vary depending on how many calories you need. Be sure to choose a variety of fruits and vegetables. Different fruits and vegetables have different amounts and types of nutrients.
The Mediterranean diet is palatable and easily sustained. In addition, recent studies have shown that when compared to a low fat diet, people on the Mediterranean diet have a greater decrease in body weight, and also had greater improvements in blood pressure, cholesterol levels, and other markers of heart disease -- all of which are important in evaluating and treating metabolic syndrome.
Picking up where HIT legends such as Arthur Jones and Mike Mentzer left off, Chris Lutz is carrying the torch of evidence based, scientific resistance training into the future.The author produces further, more up to date evidence and the proper techniques and order of operation for successful use of HIT methodology. This is a must read for any HIT enthusiast, aspiring trainer, or even the beginner trainee.
There are several classes of drugs available to treat hypertension; each works differently, targeting a specific aspect of blood pressure regulation. Frequently, someone will need to take a couple of different medications together to achieve blood pressure control. Your health practitioner will work with you to select the appropriate combinations and dosages. (See How is High Blood Pressure Treated? on the NHLBI website.)

Have you ever eaten a salad with low fat dressing, hold the nuts with a swap for lean protein? Did you leave feeling hungry, unsatisfied and searching for something else to fill you up? When this happens and you end up snacking throughout the day you never have the opportunity to burn fat as fuel because your metabolic hormones are increased and you never enter the fasting stage. No Bueno! https://i.ytimg.com/vi/OM263kSxLm4/hqdefault.jpg?sqp
I think it's better to look at total work than just reps in a given set, as not all drills are created equal.  For example, if you do a barbell complex consisting of five snatches, five cleans, five front squats, five barbell rows, and five deadlifts, you've done a ton more work than if you just did 25 medicine ball throws.  The loading capabilities are greater with the barbell complex, and the bar travels over a greater distance.  Since work equals force times distance, it's a more powerful stimulus than the medicine ball throws.
Findings from the Diabetes Control and Complications Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have clearly shown that aggressive and intensive control of elevated levels of blood sugar in patients with type 1 and type 2 diabetes decreases the complications of nephropathy, neuropathy, retinopathy, and may reduce the occurrence and severity of large blood vessel diseases. Aggressive control with intensive therapy means achieving fasting glucose levels between 70-120 mg/dl; glucose levels of less than 160 mg/dl after meals; and a near normal hemoglobin A1c levels (see below).
The treatment of low blood sugar consists of administering a quickly absorbed glucose source. These include glucose containing drinks, such as orange juice, soft drinks (not sugar-free), or glucose tablets in doses of 15-20 grams at a time (for example, the equivalent of half a glass of juice). Even cake frosting applied inside the cheeks can work in a pinch if patient cooperation is difficult. If the individual becomes unconscious, glucagon can be given by intramuscular injection.
If your blood pressure is elevated, your doctor may request you have more readings over the course of a few days or weeks. A hypertension diagnosis is rarely given after just one reading. Your doctor needs to see evidence of a sustained problem. That’s because your environment can contribute to increased blood pressure, such as the stress you may feel by being at the doctor’s office. Also, blood pressure levels change throughout the day.
Prevention and treatment involve maintaining a healthy diet, regular physical exercise, a normal body weight, and avoiding use of tobacco.[2] Control of blood pressure and maintaining proper foot care are important for people with the disease.[2] Type 1 DM must be managed with insulin injections.[2] Type 2 DM may be treated with medications with or without insulin.[9] Insulin and some oral medications can cause low blood sugar.[13] Weight loss surgery in those with obesity is sometimes an effective measure in those with type 2 DM.[14] Gestational diabetes usually resolves after the birth of the baby.[15]

Dietary changes: The health care provider might recommend a diet that includes more vegetables (especially leafy green vegetables), fruits, low-fat dairy products, and fiber-rich foods, and fewer carbohydrates, fats, processed foods, and sugary drinks. He or she also might recommend preparing low-sodium dishes and not adding salt to foods. Watch out for foods with lots of hidden salt (like bread, sandwiches, pizza, and many restaurant and fast-food options).
Usually, there are no immediate physical symptoms of metabolic syndrome. People with metabolic syndrome do have a tendency to be overweight, especially around the abdomen – having an “apple shape.” Moreover, since this condition is associated with insulin resistance, individuals with metabolic syndrome may display some of the clinical features associated with an increase in the production of insulin. For instance, women may experience cysts on their ovaries (metabolic syndrome is associated with polycystic ovarian syndrome) and irregular periods. Individuals can have an increased incidence of skin tags, benign raised growths of skin that usually appear increases on the neck and back. In addition, they can exhibit acanthosis nigricans – a pigmentation of the skin, which appears discolored or dirty over the back of the neck and underarms.

As evident from the above, younger individuals may present with hypertension associated with an elevated cardiac output (high-output hypertension). High-output hypertension results from volume and sodium retention by the kidney, leading to increased stroke volume and, often, with cardiac stimulation by adrenergic hyperactivity. Systemic vascular resistance is generally not increased at such earlier stages of hypertension. As hypertension is sustained, however, vascular adaptations including remodeling, vasoconstriction, and vascular rarefaction occur, leading to increased systemic vascular resistance. In this situation, cardiac output is generally normal or slightly reduced, and circulating blood volume is normal.
Approximately half of individuals with hypertension have OSA, and approximately half with OSA have hypertension. Ambulatory BP monitoring normally reveals a "dip" in BP of at least 10% during sleep. However, if a patient is a "nondipper," the chances that the patient has OSA is increased. Nondipping is thought to be caused by frequent apneic/hypopneic episodes that end with arousals associated with marked spikes in BP that last for several seconds. Apneic episodes are associated with striking increases in sympathetic nerve activity and enormous elevations of BP. Individuals with sleep apnea have increased cardiovascular mortality, in part likely related to the high incidence of hypertension. http://www.sandysidhumedia.com/wp-content/uploads/2013/12/SSM_Logo_White.png

Arachidonic acid (with its precursor – linoleic acid) serve as a substrate to the production of inflammatory mediators known as eicosanoids, whereas the arachidonic acid-containing compound diacylglycerol (DAG) is a precursor to the endocannabinoid 2-arachidonoylglycerol (2-AG) while fatty acid amide hydrolase (FAAH) mediates the metabolism of anandamide into arachidonic acid.[37][35] Anandamide can also be produced from N-acylphosphatidylethanolamine via several pathways.[35] Anandamide and 2-AG can also be hydrolized into arachidonic acid, potentially leading to increased eicosanoid synthesis.[35] Metabolic syndrome is a risk factor for neurological disorders.[38] Metabolomic studies suggest an excess of organic acids, impaired lipid oxidation byproducts, essential fatty acids and essential amino acids in the blood serum of affected patients.
MRUT is just about the best acronym I've heard in awhile. Have to check it out, but I can already say I like it. The other point of note is that I'm putting together a Jenn Sinkler incidence table. By my early estimates I can't get through three hours of my day without running into Jenn's name or mention of her new book. Add that one to the reading list too. At this rate, with all of this content, my workouts are suffering. I'm going to recommend these books move to MP3 formats with good background tunes so we can all listen while we lift. Problem solved. Thanks John. Good stuff.
In most people, high blood pressure rarely causes any signs or symptoms.  It's possible to have it for many years without realizing it. Often, it only becomes apparent during a routine health checkup. Rarely, even when levels are life-threatening, high blood pressure may cause only a few symptoms, such as headaches, dizziness, or frequent nosebleeds.
Approximately half of individuals with hypertension have OSA, and approximately half with OSA have hypertension. Ambulatory BP monitoring normally reveals a "dip" in BP of at least 10% during sleep. However, if a patient is a "nondipper," the chances that the patient has OSA is increased. Nondipping is thought to be caused by frequent apneic/hypopneic episodes that end with arousals associated with marked spikes in BP that last for several seconds. Apneic episodes are associated with striking increases in sympathetic nerve activity and enormous elevations of BP. Individuals with sleep apnea have increased cardiovascular mortality, in part likely related to the high incidence of hypertension.
Now let’s say they are one of those people that has a very large metabolic compensation. So large that it equals or exceeds the 500 calorie deficit they were following. At this point not only will all progress stall, but the person may even start gaining weight. This is something the calorie zealots will never tell you, and if you don’t want to take my word for it, follow the links throughout this blog, or read the very nice free review article out of the International Journal of Obesity posted in the references.
This could be considered the "corollary" to #2.  Doing a set of 100 barbell snatches is absurd, as technique breaks down, and the amount of weight an athlete can use is almost too trivial to even call it metabolic RESISTANCE training.  Plus, it would likely take about 2-3 minutes to complete, which means that you're getting much more aerobic, even if an athlete is "working hard."  My feeling is that you use your work bouts to challenge anaerobic systems, and your recovery period to condition the aerobic energy system.  Let's be honest: most strength training enthusiasts care more about the aerobic system for recovery than actual aerobic exercise performance, anyway.
Not so anymore. Thanks to the rising obesity epidemic in young people, kids and teens are getting these conditions — and they're getting them earlier than ever before. Some estimates say that nearly 1 in 10 teens — and over a third of obese teens — have metabolic syndrome. And a study of 375 second- and third-graders found that 5% had metabolic syndrome and 45% had one or two risk factors for it. https://i.ytimg.com/vi/-wDavU9u0rQ/hqdefault.jpg?sqp
Diabetes mellitus occurs throughout the world but is more common (especially type 2) in more developed countries. The greatest increase in rates has however been seen in low- and middle-income countries,[101] where more than 80% of diabetic deaths occur.[105] The fastest prevalence increase is expected to occur in Asia and Africa, where most people with diabetes will probably live in 2030.[106] The increase in rates in developing countries follows the trend of urbanization and lifestyle changes, including increasingly sedentary lifestyles, less physically demanding work and the global nutrition transition, marked by increased intake of foods that are high energy-dense but nutrient-poor (often high in sugar and saturated fats, sometimes referred to as the "Western-style" diet).[101][106] The global prevalence of diabetes might increase by 55% between 2013 and 2035.[101] https://www.pickthebrain.com/blog/wp-content/uploads/2013/03/meditation.png
There are some interesting developments in blood glucose monitoring including continuous glucose sensors. The new continuous glucose sensor systems involve an implantable cannula placed just under the skin in the abdomen or in the arm. This cannula allows for frequent sampling of blood glucose levels. Attached to this is a transmitter that sends the data to a pager-like device. This device has a visual screen that allows the wearer to see, not only the current glucose reading, but also the graphic trends. In some devices, the rate of change of blood sugar is also shown. There are alarms for low and high sugar levels. Certain models will alarm if the rate of change indicates the wearer is at risk for dropping or rising blood glucose too rapidly. One version is specifically designed to interface with their insulin pumps. In most cases the patient still must manually approve any insulin dose (the pump cannot blindly respond to the glucose information it receives, it can only give a calculated suggestion as to whether the wearer should give insulin, and if so, how much). However, in 2013 the US FDA approved the first artificial pancreas type device, meaning an implanted sensor and pump combination that stops insulin delivery when glucose levels reach a certain low point. All of these devices need to be correlated to fingersticks measurements for a few hours before they can function independently. The devices can then provide readings for 3 to 5 days.
Mark A Silverberg, MD, MMB, FACEP Assistant Professor, Associate Residency Director, Department of Emergency Medicine, State University of New York Downstate College of Medicine; Consulting Staff, Department of Emergency Medicine, Staten Island University Hospital, Kings County Hospital, University Hospital, State University of New York Downstate Medical Center
How does high blood sugar (hyperglycemia) feel? To maintain the right amount of blood sugar, the body needs insulin, a hormone that delivers this sugar to the cells. When insulin is lacking, blood sugar builds up. We describe symptoms of high blood sugar, including fatigue, weight loss, and frequent urination. Learn who is at risk and when to see a doctor here. Read now

In most people with established essential hypertension, increased resistance to blood flow (total peripheral resistance) accounts for the high pressure while cardiac output remains normal.[52] There is evidence that some younger people with prehypertension or 'borderline hypertension' have high cardiac output, an elevated heart rate and normal peripheral resistance, termed hyperkinetic borderline hypertension.[53] These individuals develop the typical features of established essential hypertension in later life as their cardiac output falls and peripheral resistance rises with age.[53] Whether this pattern is typical of all people who ultimately develop hypertension is disputed.[54] The increased peripheral resistance in established hypertension is mainly attributable to structural narrowing of small arteries and arterioles,[55] although a reduction in the number or density of capillaries may also contribute.[56] 
×