Research shows that Western diet habits are a factor in development of metabolic syndrome, with high consumption of food that is not biochemically suited to humans.[21] Weight gain is associated with metabolic syndrome. Rather than total adiposity, the core clinical component of the syndrome is visceral and/or ectopic fat (i.e., fat in organs not designed for fat storage) whereas the principal metabolic abnormality is insulin resistance.[22] The continuous provision of energy via dietary carbohydrate, lipid, and protein fuels, unmatched by physical activity/energy demand creates a backlog of the products of mitochondrial oxidation, a process associated with progressive mitochondrial dysfunction and insulin resistance.
Metabolic syndrome is a cluster of metabolic risk factors that come together in a single individual. These metabolic factors include insulin resistance, hypertension (high blood pressure), cholesterol abnormalities, and an increased risk for blood clotting. Affected individuals are most often overweight or obese. An association between certain metabolic disorders and cardiovascular disease has been known since the 1940s.

Dr Jacomien de Villiers qualified as a specialist physician at the University of Pretoria in 1995. She worked at various clinics at the Department of Internal Medicine, Steve Biko Hospital, these include General Internal Medicine, Hypertension, Diabetes and Cardiology. She has run a private practice since 2001, as well as a consultant post at the Endocrine Clinic of Steve Biko Hospital.

How to treat metabolic syndrome is controversial. Because there are several potential markers, the public health community has struggled with the decision of how best to define, diagnose and treat it. Nutritional approaches have generally been downplayed in favor of multiple medications that target the individual markers. Conventional recommendations tend to emphasize caloric restriction and reduced fat intake, even though metabolic syndrome can best be described as carbohydrate intolerance. The most effective treatment for metabolic syndrome is to control the intake of carbs, not fat. In fact, restricting dietary fat and replacing it with carbohydrate actually makes many of the problems of metabolic syndrome worse. The metabolic syndrome paradigm has therefore caused a great deal of distress—and pushback—among those advocating low-fat diets. For more on how to prevent metabolic syndrome, see How to Reduce Your Risk for Metabolic Syndrome.
The goal of treating metabolic syndrome is to prevent the development of diabetes, heart disease, and stroke. Your doctor will first suggest lifestyle modifications such as exercising for 30 minutes most days of the week. One study showed that individuals who are physically active (30 minutes of activity at least once per week) have half the risk of developing metabolic syndrome than those who are inactive. Your doctor may also suggest eating a healthy diet to promote weight loss and normal blood cholesterol and fat levels.
Now that you've enjoyed some success following the Atkins Nutritional Approach™, let's talk about sustaining that weight loss. You undoubtedly know exactly how much weight you lost during the first 14 days of Induction. That number will help give you a general understanding of your personal degree of metabolic resistance. As you can see on the metabolic resistance table below, a woman who has 40 pounds to lose and sheds three pounds in two weeks during Induction has a high degree of metabolic resistance as compared to a woman with similar weight-loss goals who drops eight pounds.
Insulin — the hormone that allows your body to regulate sugar in the blood — is made in your pancreas. Essentially, insulin resistance is a state in which the body’s cells do not use insulin efficiently. As a result, it takes more insulin than normal to transport blood sugar (glucose) into cells, to be used immediately for fuel or stored for later use. A drop in efficiency in getting glucose to cells creates a problem for cell function; glucose is normally the body’s quickest and most readily available source of energy.
For a diagnosis of metabolic syndrome, a child must have at least three of the four risk factors. The most common risk factors in teens are hypertension and abnormal cholesterol. Even when just one risk factor is present, a doctor will likely check for the others. This is especially true if a child is overweight, has a family member with type 2 diabetes, or has acanthosis nigricans.

Diabetic ketoacidosis can be caused by infections, stress, or trauma, all of which may increase insulin requirements. In addition, missing doses of insulin is also an obvious risk factor for developing diabetic ketoacidosis. Urgent treatment of diabetic ketoacidosis involves the intravenous administration of fluid, electrolytes, and insulin, usually in a hospital intensive care unit. Dehydration can be very severe, and it is not unusual to need to replace 6-7 liters of fluid when a person presents in diabetic ketoacidosis. Antibiotics are given for infections. With treatment, abnormal blood sugar levels, ketone production, acidosis, and dehydration can be reversed rapidly, and patients can recover remarkably well.


The discussion of weight and weight loss has evolved dramatically over the past 10-15 years. In some ways this has been for the better, but in other ways for the worse. I am incredibly grateful that the discussion has moved beyond just the calories in, calories out model (because we all know at this point that that is crap!). This notion though, that calories are not the key point of the equation has spurred a $66.3 BILLION dollar diet industry. Whether this is diet pills, the gym, or other contraptions that promise to shake your last 10lbs off the general understanding is that people are being taken for a very expensive ride. At the same time though, more North American’s are in the over weight and obese category than ever. So what digs?
Blood pressure is expressed by two measurements, the systolic and diastolic pressures, which are the maximum and minimum pressures, respectively.[1] For most adults, normal blood pressure at rest is within the range of 100–130 millimeters mercury (mmHg) systolic and 60–80 mmHg diastolic.[7][12] For most adults, high blood pressure is present if the resting blood pressure is persistently at or above 130/80 or 140/90 mmHg.[5][7] Different numbers apply to children.[13] Ambulatory blood pressure monitoring over a 24-hour period appears more accurate than office-based blood pressure measurement.[5][10]
Globally, black adults have among the highest rates of hypertension, with an increasing prevalence. Although white adults also have an increasing incidence of high BP, they develop this condition later in life than black adults and have much lower average BPs. In fact, compared to hypertensive white persons, hypertensive black individuals have a 1.3-fold higher rate of nonfatal stroke, a 1.8-fold higher rate of fatal stroke, a 1.5-fold higher mortality rate due to heart disease, and a 4.2-fold higher rate of end-stage renal disease (ESRD). [38]
Though not routinely used any longer, the oral glucose tolerance test (OGTT) is a gold standard for making the diagnosis of type 2 diabetes. It is still commonly used for diagnosing gestational diabetes and in conditions of pre-diabetes, such as polycystic ovary syndrome. With an oral glucose tolerance test, the person fasts overnight (at least eight but not more than 16 hours). Then first, the fasting plasma glucose is tested. After this test, the person receives an oral dose (75 grams) of glucose. There are several methods employed by obstetricians to do this test, but the one described here is standard. Usually, the glucose is in a sweet-tasting liquid that the person drinks. Blood samples are taken at specific intervals to measure the blood glucose.
Many mechanisms have been proposed to account for the rise in peripheral resistance in hypertension. Most evidence implicates either disturbances in the kidneys' salt and water handling (particularly abnormalities in the intrarenal renin–angiotensin system)[61] or abnormalities of the sympathetic nervous system.[62] These mechanisms are not mutually exclusive and it is likely that both contribute to some extent in most cases of essential hypertension. It has also been suggested that endothelial dysfunction and vascular inflammation may also contribute to increased peripheral resistance and vascular damage in hypertension.[63][64] Interleukin 17 has garnered interest for its role in increasing the production of several other immune system chemical signals thought to be involved in hypertension such as tumor necrosis factor alpha, interleukin 1, interleukin 6, and interleukin 8.[65]

Insulin is a hormone that is produced by specialized cells (beta cells) of the pancreas. (The pancreas is a deep-seated organ in the abdomen located behind the stomach.) In addition to helping glucose enter the cells, insulin is also important in tightly regulating the level of glucose in the blood. After a meal, the blood glucose level rises. In response to the increased glucose level, the pancreas normally releases more insulin into the bloodstream to help glucose enter the cells and lower blood glucose levels after a meal. When the blood glucose levels are lowered, the insulin release from the pancreas is turned down. It is important to note that even in the fasting state there is a low steady release of insulin than fluctuates a bit and helps to maintain a steady blood sugar level during fasting. In normal individuals, such a regulatory system helps to keep blood glucose levels in a tightly controlled range. As outlined above, in patients with diabetes, the insulin is either absent, relatively insufficient for the body's needs, or not used properly by the body. All of these factors cause elevated levels of blood glucose (hyperglycemia).
Especially severe cases of hypertension, or hypertensive crises, are defined as a BP of more than 180/120 mm Hg and may be further categorized as hypertensive emergencies or urgencies. Hypertensive emergencies are characterized by evidence of impending or progressive target organ dysfunction, whereas hypertensive urgencies are those situations without progressive target organ dysfunction. [2]
Have you ever eaten a salad with low fat dressing, hold the nuts with a swap for lean protein? Did you leave feeling hungry, unsatisfied and searching for something else to fill you up? When this happens and you end up snacking throughout the day you never have the opportunity to burn fat as fuel because your metabolic hormones are increased and you never enter the fasting stage. No Bueno!
[Guideline] Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009 Oct 20. 120(16):1640-5. [Medline].
Obstructive sleep apnea (OSA) is a common but frequently undiagnosed sleep-related breathing disorder defined as an average of at least 10 apneic and hypopenic episodes per sleep hour, which leads to excessive daytime sleepiness. Multiple studies have shown OSA to be an independent risk factor for the development of essential hypertension, even after adjusting for age, gender, and degree of obesity.
[Guideline] Skyler JS, Bergenstal R, Bonow RO, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA Diabetes Trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. J Am Coll Cardiol. 2009 Jan 20. 53(3):298-304. [Medline].
×