Doctors, pharmacists, and other health-care professionals use abbreviations, acronyms, and other terminology for instructions and information in regard to a patient's health condition, prescription drugs they are to take, or medical procedures that have been ordered. There is no approved this list of common medical abbreviations, acronyms, and terminology used by doctors and other health- care professionals. You can use this list of medical abbreviations and acronyms written by our doctors the next time you can't understand what is on your prescription package, blood test results, or medical procedure orders. Examples include:
Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., Collins, K. J., Dennison Himmelfarb, C., ...Wright, J. T. (2017, November 13). ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension. Retrieved from http://hyper.ahajournals.org/content/early/2017/11/10/HYP.0000000000000065
Current strategies for controlling cardiovascular disease (CVD) risk factors, such as high blood pressure and high cholesterol, are not widely used as standard practice. CDC developed this guide to provide health professionals with evidence-based strategies for effective and sustainable CVD prevention, including health and economic impact and potential for reducing health disparities.
At the end of the twelve-week study both groups lost weight, but the difference in the amount of muscle vs. fat loss was telling. The aerobic group lost 37 pounds over the course of the study. Ten of those pounds came from muscle. In contrast, the resistance-training group lost 32 pounds. None of the weight they lost came from muscle. When the resting metabolic rate of each group was calculated, the aerobic group was shown to be burning 210 fewer calories per day. The resistance-training group avoided this metabolic decline and instead was burning 63 more calories per day.
^ Qaseem, A; Wilt, TJ; Rich, R; Humphrey, LL; Frost, J; Forciea, MA; Clinical Guidelines Committee of the American College of Physicians and the Commission on Health of the Public and Science of the American Academy of Family, Physicians. (21 March 2017). "Pharmacologic Treatment of Hypertension in Adults Aged 60 Years or Older to Higher Versus Lower Blood Pressure Targets: A Clinical Practice Guideline From the American College of Physicians and the American Academy of Family Physicians". Annals of Internal Medicine. 166 (6): 430–437. doi:10.7326/m16-1785. PMID 28135725.
The pathogenesis of essential hypertension is multifactorial and complex. [13] Multiple factors modulate the blood pressure (BP) including humoral mediators, vascular reactivity, circulating blood volume, vascular caliber, blood viscosity, cardiac output, blood vessel elasticity, and neural stimulation. A possible pathogenesis of essential hypertension has been proposed in which multiple factors, including genetic predisposition, excess dietary salt intake, and adrenergic tone, may interact to produce hypertension. Although genetics appears to contribute, the exact mechanisms underlying essential hypertension have not been established.
As of 2016, 422 million people have diabetes worldwide,[101] up from an estimated 382 million people in 2013[17] and from 108 million in 1980.[101] Accounting for the shifting age structure of the global population, the prevalence of diabetes is 8.5% among adults, nearly double the rate of 4.7% in 1980.[101] Type 2 makes up about 90% of the cases.[16][18] Some data indicate rates are roughly equal in women and men,[18] but male excess in diabetes has been found in many populations with higher type 2 incidence, possibly due to sex-related differences in insulin sensitivity, consequences of obesity and regional body fat deposition, and other contributing factors such as high blood pressure, tobacco smoking, and alcohol intake.[102][103]
If the amount of insulin available is insufficient, or if cells respond poorly to the effects of insulin (insulin insensitivity or insulin resistance), or if the insulin itself is defective, then glucose will not be absorbed properly by the body cells that require it, and it will not be stored appropriately in the liver and muscles. The net effect is persistently high levels of blood glucose, poor protein synthesis, and other metabolic derangements, such as acidosis.[60]

Emerging data suggest an important correlation between metabolic syndrome and risk of stroke. [58] Each of the components of metabolic syndrome has been associated with elevated stroke risk, and evidence demonstrates a relationship between the collective metabolic syndrome and risk of ischemic stroke. [59] Metabolic syndrome may also be linked to neuropathy beyond hyperglycemic mechanisms through inflammatory mediators. [60]
×