As a clinician who works with weight loss and obesity, I can tell you with certainty that people can and do become weight loss resistant and can develop some degree of “metabolic damage”. Metabolic damage is a non-diagnostic term many in the weight loss industry use to describe a set of functional disturbances. These disturbances include severe metabolic compensations that result in a depressed metabolic rate, chronic fatigue, immune suppression, and multiple hormonal effects (i.e. suppressed thyroid function, adrenal stress maladaptation, and loss of libido and/or menses).


People who have metabolic syndrome or are at risk for it may need to take medicine as treatment. This is especially true if diet and other lifestyle changes have not made a difference. Your doctor may prescribe medicine to help lower blood pressure, improve insulin metabolism, lower LDL cholesterol and raise HDL cholesterol, increase weight loss, or some combination of these.

Once the diagnosis of hypertension has been made, healthcare providers should attempt to identify the underlying cause based on risk factors and other symptoms, if present. Secondary hypertension is more common in preadolescent children, with most cases caused by kidney disease. Primary or essential hypertension is more common in adolescents and has multiple risk factors, including obesity and a family history of hypertension.[83] Laboratory tests can also be performed to identify possible causes of secondary hypertension, and to determine whether hypertension has caused damage to the heart, eyes, and kidneys. Additional tests for diabetes and high cholesterol levels are usually performed because these conditions are additional risk factors for the development of heart disease and may require treatment.[6]

As you lose weight your leptin levels drop, signalling to your body that it should probably start to slow things down. In this case you can feel hungry all of the time, but also sluggish and weight loss stops. Some people even see weight gain which can either send you into frustration nation… or alternatively lead you to cut more calories and drive your metabolic rate and gut hormone signalling down even further! Yikes!
Out of this whole article this quote from a participant was the thing that drove my emotions. For anyone who struggles with weight loss resistance this will stab you in the heart. It is so incredibly true. There is nothing quite like feeling like your body is failing you and that even starving yourself, restricting every delicious food and exercising to the max is not enough.
Let’s be real. Metabolic Resistance Training is numero uno for a reason; it’s a nearly perfect method for losing fat. If you’re looking for something more in-depth, Jen Sinkler’s Lift Weights Faster 2 has over 180 metabolic workouts. ONE HUNDRED EIGHTY of them! You’ve got workouts for the next year, and that’s if you train every other day and don’t repeat any.
Another common endocrine cause is oral contraceptive use. Activation of the renin-angiotensin-aldosterone system (RAAS) is the likely mechanism, because hepatic synthesis of angiotensinogen is induced by the estrogen component of oral contraceptives. Approximately 5% of women taking oral contraceptives may develop hypertension, which abates within 6 months after discontinuation. The risk factors for oral contraceptive–associated hypertension include mild renal disease, familial history of essential hypertension, age older than 35 years, and obesity. It would be better to group oral contraceptives and steroids with drug-induced hypertension (see Table 1, below).
Metabolic syndrome (also known as metabolic syndrome X) is a grouping of cardiac risk factors that result from insulin resistance (when the body's tissues do not respond normally to insulin). A person with metabolic syndrome has a greatly increased risk of developing type 2 diabetes, cardiovascular disease and premature death. In fact, another name for metabolic syndrome is pre-diabetes.
Energy expenditure over the course of an MRT workout can easily approach or exceed 600 calories, depending on the routine. Better yet, excess post-exercise oxygen consumption (EPOC) increases dramatically. EPOC, often referred to as afterburn, measures the energy expended to return your body to its normal, resting state after a workout. Post-workout, your body uses an immense amount of energy to go from Mr. Huff-and-Puff back to Mr. Breathe-Normal. Considering that intense training can elevate EPOC for 38 hours or more, the total number of calories burned quickly stacks.[9]
The undiagnosed/untreated metabolic condition that spreads.  Metabolism is an intricate system of organs communicating with one another to do a job.  If you have a problem in one area, it will affect other areas as well.  The example I use with patients is to picture metabolism as an orchestra playing a song.  If the flutes are playing off key or out of time, the other instruments in the band will likely wander off key and timing as well.  In the end, everyone is off and the song is a mess.  This is how metabolic damage can develop as well.  An untreated thyroid condition will negatively affect all other systems and metabolism as a whole.
Recent research indicates prolonged chronic stress can contribute to metabolic syndrome by disrupting the hormonal balance of the hypothalamic-pituitary-adrenal axis (HPA-axis).[23] A dysfunctional HPA-axis causes high cortisol levels to circulate, which results in raising glucose and insulin levels, which in turn cause insulin-mediated effects on adipose tissue, ultimately promoting visceral adiposity, insulin resistance, dyslipidemia and hypertension, with direct effects on the bone, causing "low turnover" osteoporosis.[24] HPA-axis dysfunction may explain the reported risk indication of abdominal obesity to cardiovascular disease (CVD), type 2 diabetes and stroke.[25] Psychosocial stress is also linked to heart disease.[26]

The key sign of metabolic syndrome is central obesity, also known as visceral, male-pattern or apple-shaped adiposity. It is characterized by adipose tissue accumulation predominantly around the waist and trunk.[5] Other signs of metabolic syndrome include high blood pressure, decreased fasting serum HDL cholesterol, elevated fasting serum triglyceride level, impaired fasting glucose, insulin resistance, or prediabetes. Associated conditions include hyperuricemia; fatty liver (especially in concurrent obesity) progressing to nonalcoholic fatty liver disease; polycystic ovarian syndrome in women and erectile dysfunction in men; and acanthosis nigricans.
Hypertension is rarely accompanied by symptoms, and its identification is usually through screening, or when seeking healthcare for an unrelated problem. Some people with high blood pressure report headaches (particularly at the back of the head and in the morning), as well as lightheadedness, vertigo, tinnitus (buzzing or hissing in the ears), altered vision or fainting episodes.[20] These symptoms, however, might be related to associated anxiety rather than the high blood pressure itself.[21]

Anteroposterior x-ray from a 28-year old woman who presented with congestive heart failure secondary to her chronic hypertension, or high blood pressure. The enlarged cardiac silhouette on this image is due to congestive heart failure due to the effects of chronic high blood pressure on the left ventricle. The heart then becomes enlarged, and fluid accumulates in the lungs, known as pulmonary congestion.
The major eye complication of diabetes is called diabetic retinopathy. Diabetic retinopathy occurs in patients who have had diabetes for at least five years. Diseased small blood vessels in the back of the eye cause the leakage of protein and blood in the retina. Disease in these blood vessels also causes the formation of small aneurysms (microaneurysms), and new but brittle blood vessels (neovascularization). Spontaneous bleeding from the new and brittle blood vessels can lead to retinal scarring and retinal detachment, thus impairing vision.
To explain what hemoglobin A1c is, think in simple terms. Sugar sticks, and when it's around for a long time, it's harder to get it off. In the body, sugar sticks too, particularly to proteins. The red blood cells that circulate in the body live for about three months before they die off. When sugar sticks to these hemoglobin proteins in these cells, it is known as glycosylated hemoglobin or hemoglobin A1c (HBA1c). Measurement of HBA1c gives us an idea of how much sugar is present in the bloodstream for the preceding three months. In most labs, the normal range is 4%-5.9 %. In poorly controlled diabetes, its 8.0% or above, and in well controlled patients it's less than 7.0% (optimal is <6.5%). The benefits of measuring A1c is that is gives a more reasonable and stable view of what's happening over the course of time (three months), and the value does not vary as much as finger stick blood sugar measurements. There is a direct correlation between A1c levels and average blood sugar levels as follows.

The oral glucose tolerance test (OGTT), or glucose tolerance test is a blood test used (not routinely however) to diagnose diabetes, and gestational diabetes. Information in regard to reliability of the oral glucose tolerance test is important, as some conditions (common cold), or food (caffeine), or lifestyle habits (smoking) may alter the results of the oral glucose tolerance test.
Researchers used a circuit training protocol of 12 sets in 31 minutes. EPOC (Exercise Post Oxygen Consumption) was elevated significantly for 38 hours post-workout. That's a significant timeframe for metabolism to be elevated. If you trained for one hour on Monday morning, you'd still be burning more calories (without training) at midnight on Tuesday.
Insulin is vital to patients with type 1 diabetes - they cannot live without a source of exogenous insulin. Without insulin, patients with type 1 diabetes develop severely elevated blood sugar levels. This leads to increased urine glucose, which in turn leads to excessive loss of fluid and electrolytes in the urine. Lack of insulin also causes the inability to store fat and protein along with breakdown of existing fat and protein stores. This dysregulation, results in the process of ketosis and the release of ketones into the blood. Ketones turn the blood acidic, a condition called diabetic ketoacidosis (DKA). Symptoms of diabetic ketoacidosis include nausea, vomiting, and abdominal pain. Without prompt medical treatment, patients with diabetic ketoacidosis can rapidly go into shock, coma, and even death may result.
×