Great read! Do you follow Jade Teta and Metabolic Effect? They use an RBT, or rest-based training, protocol for their metabolic workouts. Similarly to what you described above about not prescribing preset rest times, in RBT the autonomy is in the clients hands - not the trainer. So their metabolic workout may last 20 minutes where they are doing various compound ("hybrid") movements, but they rest as they need it. Basically they "push until they can't, then rest until they can". So they end up going hard, forcing themselves to rest, then picking back up, repeat for duration of workout. I have excellent success using RBT with my coaching clients. They get an awesome workout, but don't end up like your sometimes-client above, ha. As always, loved the post. Thanks! --Brian
Creatinine is a chemical waste molecule that is generated from muscle metabolism. Creatinine is produced from creatine, a molecule of major importance for energy production in muscles. Creatinine has been found to be a fairly reliable indicator of kidney function. As the kidneys become impaired the creatinine level in the blood will rise. Normal levels of creatinine in the blood vary from gender and age of the individual.

^ Pignone M, Alberts MJ, Colwell JA, Cushman M, Inzucchi SE, Mukherjee D, Rosenson RS, Williams CD, Wilson PW, Kirkman MS (June 2010). "Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation". Diabetes Care. 33 (6): 1395–402. doi:10.2337/dc10-0555. PMC 2875463. PMID 20508233.
But why does someone get to this point?  For the chronic dieter they arrive with metabolic damage because they hold tightly to the “Eat less, exercise more” mantras they were taught.  When weight loss slows down, they eat less and push harder in their exercise routine, pushing metabolism into the ground.  For the person with the unknown metabolism problem their road to metabolic damage is much more subtle.  This person simply isn’t feeling well, starts putting on weight, and progresses all the way to metabolic damage because no doctor was able to identify what was going wrong.
Though it may be transient, untreated GDM can damage the health of the fetus or mother. Risks to the baby include macrosomia (high birth weight), congenital heart and central nervous system abnormalities, and skeletal muscle malformations. Increased levels of insulin in a fetus's blood may inhibit fetal surfactant production and cause infant respiratory distress syndrome. A high blood bilirubin level may result from red blood cell destruction. In severe cases, perinatal death may occur, most commonly as a result of poor placental perfusion due to vascular impairment. Labor induction may be indicated with decreased placental function. A caesarean section may be performed if there is marked fetal distress or an increased risk of injury associated with macrosomia, such as shoulder dystocia.[51]
Enlarged heart. High blood pressure increases the amount of work for your heart. Like any heavily exercised muscle in your body, your heart grows bigger (enlarges) to handle the extra workload. The bigger your heart is, the more it demands oxygen-rich blood but the less able it is to maintain proper blood flow. As a result, you feel weak and tired and are not able to exercise or perform physical activities. Without treatment, your heart failure will only get worse.
Defining abnormally high blood pressure (BP) is extremely difficult and arbitrary. Furthermore, the relationship between systemic arterial pressure and morbidity appears to be quantitative rather than qualitative. A level for high BP must be agreed upon in clinical practice for screening patients with hypertension and for instituting diagnostic evaluation and initiating therapy. Because the risk to an individual patient may correlate with the severity of hypertension, a classification system is essential for making decisions about aggressiveness of treatment or therapeutic interventions. (See Presentation.)
Excess abdominal fat leads to excess free fatty acids in the portal vein, increasing fat accumulation in the liver. Fat also accumulates in muscle cells. Insulin resistance develops, with hyperinsulinemia. Glucose metabolism is impaired, and dyslipidemias and hypertension develop. Serum uric acid levels are typically elevated (increasing risk of gout), and a prothrombotic state (with increased levels of fibrinogen and plasminogen activator inhibitor I) and an inflammatory state develop.

Insulin serves as a “key” to open your cells, to allow the glucose to enter -- and allow you to use the glucose for energy.  Without insulin, there is no “key.”   So, the sugar stays -- and builds up-- in the blood. The result: the body’s cells starve from the lack of glucose.  And, if left untreated, the high level of “blood sugar” can damage eyes, kidneys, nerves, and the heart, and can also lead to coma and death. 
It has not been contested that cardiovascular risk factors tend to cluster together; the matter of contention has been the assertion that the metabolic syndrome is anything more than the sum of its constituent parts. Phenotypic heterogeneity (for example, represented by variation in metabolic syndrome factor combinations among individuals with metabolic syndrome) has fueled that debate. However, more recent evidence suggests that common triggers (for example, excessive sugar-intake in the environment of overabundant food) can contribute to the development of multiple metabolic abnormalities at the same time, supporting the commonality of the energy utilization and storage pathways in metabolic syndrome.

What are symptoms of type 2 diabetes in children? Type 2 diabetes is becoming increasingly common in children, and this is linked to a rise in obesity. However, the condition can be difficult to detect in children because it develops gradually. Symptoms, treatment, and prevention of type 2 diabetes are similar in children and adults. Learn more here. Read now
* Some examples of agents that induce hypertension include nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2 (COX-2) inhibitors; illicit drugs; sympathomimetic agents; oral contraceptive or adrenal steroid hormones; cyclosporine and tacrolimus; licorice; erythropoietin; and certain over-the-counter dietary supplements and medicines, such as ephedra, ma huang, and bitter orange. Drug-related causes of hypertension may be due to nonadherence, inadequate doses, and inappropriate combinations.

The brain is crucial in development of metabolic syndrome, modulating peripheral carbohydrate and lipid metabolism.[33][34] The metabolic syndrome can be induced by overfeeding with sugar or fructose, particularly concomitantly with high-fat diet.[36] The resulting oversupply of omega-6 fatty acids, particularly arachidonic acid (AA), is an important factor in the pathogenesis of metabolic syndrome.

Insulin is vital to patients with type 1 diabetes - they cannot live without a source of exogenous insulin. Without insulin, patients with type 1 diabetes develop severely elevated blood sugar levels. This leads to increased urine glucose, which in turn leads to excessive loss of fluid and electrolytes in the urine. Lack of insulin also causes the inability to store fat and protein along with breakdown of existing fat and protein stores. This dysregulation, results in the process of ketosis and the release of ketones into the blood. Ketones turn the blood acidic, a condition called diabetic ketoacidosis (DKA). Symptoms of diabetic ketoacidosis include nausea, vomiting, and abdominal pain. Without prompt medical treatment, patients with diabetic ketoacidosis can rapidly go into shock, coma, and even death may result.