There is no known preventive measure for type 1 diabetes.[2] Type 2 diabetes – which accounts for 85–90% of all cases – can often be prevented or delayed by maintaining a normal body weight, engaging in physical activity, and consuming a healthy diet.[2] Higher levels of physical activity (more than 90 minutes per day) reduce the risk of diabetes by 28%.[71] Dietary changes known to be effective in helping to prevent diabetes include maintaining a diet rich in whole grains and fiber, and choosing good fats, such as the polyunsaturated fats found in nuts, vegetable oils, and fish.[72] Limiting sugary beverages and eating less red meat and other sources of saturated fat can also help prevent diabetes.[72] Tobacco smoking is also associated with an increased risk of diabetes and its complications, so smoking cessation can be an important preventive measure as well.[73]
^ Jump up to: a b Go, AS; Bauman, M; King, SM; Fonarow, GC; Lawrence, W; Williams, KA; Sanchez, E (15 November 2013). "An Effective Approach to High Blood Pressure Control: A Science Advisory From the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention". Hypertension. 63 (4): 878–85. doi:10.1161/HYP.0000000000000003. PMID 24243703. Archived from the original on 20 November 2013. Retrieved 20 November 2013.
^ Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, Veerman JL, Delwiche K, Iannarone ML, Moyer ML, Cercy K, Vos T, Murray CJ, Forouzanfar MH (August 2016). "Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013". BMJ. 354: i3857. doi:10.1136/bmj.i3857. PMC 4979358. PMID 27510511.

Insulin is released into the blood by beta cells (β-cells), found in the islets of Langerhans in the pancreas, in response to rising levels of blood glucose, typically after eating. Insulin is used by about two-thirds of the body's cells to absorb glucose from the blood for use as fuel, for conversion to other needed molecules, or for storage. Lower glucose levels result in decreased insulin release from the beta cells and in the breakdown of glycogen to glucose. This process is mainly controlled by the hormone glucagon, which acts in the opposite manner to insulin.[61] https://www.clairekerslake.com/wp-content/uploads/2011/10/young-woman-planning-in-calendar-app-on-white-iphone-picjumbo-com-1024x683.jpg
Insulin resistance also may increase your risk for metabolic syndrome. Insulin resistance is a condition in which the body can’t use its insulin properly. Insulin is a hormone that helps move blood sugar into cells where it’s used for energy. Insulin resistance can lead to high blood sugar levels, and it’s closely linked to overweight and obesity. Genetics (ethnicity and family history) and older age are other factors that may play a role in causing metabolic syndrome.
Have you ever eaten a salad with low fat dressing, hold the nuts with a swap for lean protein? Did you leave feeling hungry, unsatisfied and searching for something else to fill you up? When this happens and you end up snacking throughout the day you never have the opportunity to burn fat as fuel because your metabolic hormones are increased and you never enter the fasting stage. No Bueno! https://i.ytimg.com/vi/OM263kSxLm4/hqdefault.jpg?sqp
Exposure to certain viral infections (mumps and Coxsackie viruses) or other environmental toxins may serve to trigger abnormal antibody responses that cause damage to the pancreas cells where insulin is made. Some of the antibodies seen in type 1 diabetes include anti-islet cell antibodies, anti-insulin antibodies and anti-glutamic decarboxylase antibodies. These antibodies can be detected in the majority of patients, and may help determine which individuals are at risk for developing type 1 diabetes.
Metabolic syndrome is believed to develop due to insulin resistance. Insulin is a hormone that is produced by the pancreas (an organ located near stomach). It helps blood sugar enter cells, where it is used for energy. With insulin resistance, the body fails to recognize the insulin that is produced, causing the sugar to accumulate in the blood instead of being absorbed into other cells. Because blood sugar levels remain high, the pancreas keeps producing more and more insulin, leading to high insulin levels. While blood sugar levels are not high enough to be classified as diabetes, they do increase the risk of developing serious health problems.
Diabetes can occur temporarily during pregnancy, and reports suggest that it occurs in 2% to 10% of all pregnancies. Significant hormonal changes during pregnancy can lead to blood sugar elevation in genetically predisposed individuals. Blood sugar elevation during pregnancy is called gestational diabetes. Gestational diabetes usually resolves once the baby is born. However, 35% to 60% of women with gestational diabetes will eventually develop type 2 diabetes over the next 10 to 20 years, especially in those who require insulin during pregnancy and those who remain overweight after their delivery. Women with gestational diabetes are usually asked to undergo an oral glucose tolerance test about six weeks after giving birth to determine if their diabetes has persisted beyond the pregnancy, or if any evidence (such as impaired glucose tolerance) is present that may be a clue to a risk for developing diabetes.
Type 2 diabetes was also previously referred to as non-insulin dependent diabetes mellitus (NIDDM), or adult-onset diabetes mellitus (AODM). In type 2 diabetes, patients can still produce insulin, but do so relatively inadequately for their body's needs, particularly in the face of insulin resistance as discussed above. In many cases this actually means the pancreas produces larger than normal quantities of insulin. A major feature of type 2 diabetes is a lack of sensitivity to insulin by the cells of the body (particularly fat and muscle cells).
14 November 2018. On World Diabetes Day 2018, WHO joins partners around the world to highlight the impact diabetes has on families and the role of family members in supporting prevention, early diagnosis and good management of diabetes. More than 400 million people live with diabetes worldwide, and the prevalence is predicted to continue rising if current trends prevail. Diabetes is a major cause of premature dying, blindness, kidney failure, heart attack, stroke and lower limb amputation. It was the seventh leading cause of death in 2016.
Secondary hypertension results from an identifiable cause. Kidney disease is the most common secondary cause of hypertension.[23] Hypertension can also be caused by endocrine conditions, such as Cushing's syndrome, hyperthyroidism, hypothyroidism, acromegaly, Conn's syndrome or hyperaldosteronism, renal artery stenosis (from atherosclerosis or fibromuscular dysplasia), hyperparathyroidism, and pheochromocytoma.[23][47] Other causes of secondary hypertension include obesity, sleep apnea, pregnancy, coarctation of the aorta, excessive eating of liquorice, excessive drinking of alcohol, and certain prescription medicines, herbal remedies, and illegal drugs such as cocaine and methamphetamine.[23][48] Arsenic exposure through drinking water has been shown to correlate with elevated blood pressure.[49][50]
In 1977 and 1978, Gerald B. Phillips developed the concept that risk factors for myocardial infarction concur to form a "constellation of abnormalities" (i.e., glucose intolerance, hyperinsulinemia, hypercholesterolemia, hypertriglyceridemia, and hypertension) associated not only with heart disease, but also with aging, obesity and other clinical states. He suggested there must be an underlying linking factor, the identification of which could lead to the prevention of cardiovascular disease; he hypothesized that this factor was sex hormones.[66][67]
The exact cause of metabolic syndrome is unknown. It is frequently influenced by diet and lifestyle, but also seems to be genetically driven. As stated, many features of metabolic syndrome are associated with “insulin resistance,” which causes cells to lose their sensitivity to insulin, the hormone needed to allow blood sugar to enter cells for use as fuel. As glucose levels in the blood increase, the pancreas tries to overcompensate and produce even more insulin, which ultimately leads to the characteristic symptoms of metabolic syndrome. When insulin levels spike, a stress response occurs that leads to elevations in cortisol, the body’s long-acting stress hormone. This in turn creates an inflammatory reaction that if left unchecked begins to damage healthy tissue.
Family or personal history. Your risk increases if you have prediabetes — a precursor to type 2 diabetes — or if a close family member, such as a parent or sibling, has type 2 diabetes. You're also at greater risk if you had gestational diabetes during a previous pregnancy, if you delivered a very large baby or if you had an unexplained stillbirth.
In type 2 diabetes (adult onset diabetes), the pancreas makes insulin, but it either doesn't produce enough, or the insulin does not work properly. Nine out of 10 people with diabetes have type 2. This type occurs most often in people who are over 40 years old but can occur even in childhood if there are risk factors present. Type 2 diabetes may sometimes be controlled with a combination of diet, weight management and exercise. However, treatment also may include oral glucose-lowering medications (taken by mouth) or insulin injections (shots).
A 2018 study suggested that three types should be abandoned as too simplistic.[57] It classified diabetes into five subgroups, with what is typically described as type 1 and autoimmune late-onset diabetes categorized as one group, whereas type 2 encompasses four categories. This is hoped to improve diabetes treatment by tailoring it more specifically to the subgroups.[58]
Type 1 diabetes is partly inherited, with multiple genes, including certain HLA genotypes, known to influence the risk of diabetes. In genetically susceptible people, the onset of diabetes can be triggered by one or more environmental factors,[41] such as a viral infection or diet. Several viruses have been implicated, but to date there is no stringent evidence to support this hypothesis in humans.[41][42] Among dietary factors, data suggest that gliadin (a protein present in gluten) may play a role in the development of type 1 diabetes, but the mechanism is not fully understood.[43][44]
Because some medications, such as over-the-counter cold medicines, pain medications, antidepressants, birth control pills and others, can raise your blood pressure, it might be a good idea to bring a list of medications and supplements you take to your doctor's appointment. Don't stop taking any prescription medications that you think may affect your blood pressure without your doctor's advice.
Dr Jacomien de Villiers qualified as a specialist physician at the University of Pretoria in 1995. She worked at various clinics at the Department of Internal Medicine, Steve Biko Hospital, these include General Internal Medicine, Hypertension, Diabetes and Cardiology. She has run a private practice since 2001, as well as a consultant post at the Endocrine Clinic of Steve Biko Hospital.
×